In Situ Deposition of Highly C-axis Oriented Lanthanum Modified Lead Titanate Thin Films by Multi-Ion-Beam Reactive Co-sputtering Technique

Author(s):  
J. Zhu ◽  
D. Xiao ◽  
J. Zhu ◽  
J. Zen
Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


1989 ◽  
Vol 43 (1-4) ◽  
pp. 393-397 ◽  
Author(s):  
J.H. James ◽  
B.J. Kellett ◽  
A. Gauzzi ◽  
B. Dwir ◽  
D. Pavuna
Keyword(s):  

1994 ◽  
Vol 33 (Part 2, No. 5B) ◽  
pp. L718-L721 ◽  
Author(s):  
Yong Ki Park ◽  
Keunseop Park ◽  
Soon-Gul Lee ◽  
Dong Chan Shin ◽  
Jong-Chul Park

2005 ◽  
Vol 423 (3-4) ◽  
pp. 89-95 ◽  
Author(s):  
R. Schneider ◽  
J. Geerk ◽  
G. Linker ◽  
F. Ratzel ◽  
A.G. Zaitsev ◽  
...  

1985 ◽  
Vol 62 ◽  
Author(s):  
A. B. Harker ◽  
D. G. Howitt ◽  
P. J. Hood ◽  
P. Kobrin

ABSTRACTThe reactive ion beam deposition of ceramic films onto unheated substrates can produce amorphous films with essentially molecular mixing. The annealing and hot isotatic pressing (hipping) of these films to produce crystalline phases have reproducable effects which are sensitive to the temperature and the density of the film. Experiments with titanium oxides indicate that it is principally the equilibrium phases that are formed and that hipping can be used to encourage the same transformations at lower temperatures.Thin films of titanium oxide close to the stoichiometry of TiO2 were deposited onto unheated substrates of sodium chloride. Some of the films were removed from the substrate by floating them off in water and the remainder were either annealed or hipped to induce crystallization. The anneals were performed either in air or argon and the hipping was done under an argon pressure of about twenty thousand pounds per square inch. Several of the free standing films were annealed in the same atmospheres on nickel grids. All the specimens were prepared for transmission electron microscopy by the same floating technique and were examined in a Philips 400 T.E.M. at 125 keV. The as deposited films were amorphous and showed no visible texture other than that derived from a small amount of porosity. The films were sufficiently conductive that they could be examined directly in the T.E.M. without carbon coating provided they were supported on a grid of fairly fine mesh. One specimen was also examined in the Kratos 1.5 MeV high voltage electron microscope at the National Center for Electron Microscopy. The specimen was annealed in vacuum using an in-situ hot stage to directly observe the behavior of the film.The post deposition annealing and hipping of these films reproducibly induced the crystallization of anatase below 800°C. This is the equilibrium phase [1] and the extent to which the films transformed and the morphology of the growing crystallites were determined principally by the film thickness. There was little difference between the responses of free standing films and films left on the salt substrate. They tended to transform at about the same temperature, which was reproduced in the in-situ hot stage experiment and the microsructures which formed were very similar. The dependence upon thickness was also reflected in all the microstructures of the different post deposition treatments and it was possible to complete the transformations that were very sluggish in some of the films by hipping them at the same temperatures.


1991 ◽  
Vol 27 (2) ◽  
pp. 2522-2524 ◽  
Author(s):  
S. Barbanera ◽  
F. Murtas ◽  
L. Scopa ◽  
V. Boffa ◽  
G. Paterno ◽  
...  

2001 ◽  
Vol 15 (28n29) ◽  
pp. 1361-1369 ◽  
Author(s):  
J. GARCÍA LÓPEZ ◽  
J SIEJKA ◽  
Y. LEMAITRE ◽  
J. C. MAGE ◽  
B. MARCILHAC

An experimental chamber was connected to the 2.5 MV Van de Graaff accelerator allowing in situ sample annealing at T ≤ 700° C and under pO 2 ranging from 10-8 to 1 bar. For the first time to our knowledge the 16 O (3 He ,α)15 O nuclear reaction has been employed to monitor in situ the oxygen loss and uptake in Y 1 Ba 2 Cu 3 O 7-x (YBCO) thin films as a function of oxygen pressure and temperature ( T ≤ 500° C ). The role played by the presence of carbon contamination on YBCO surface was elucidated. Using the 12 C(d,p) 13 C nuclear reaction the carbon loss was observed for T ≥ 250° C and it was associated with the oxygen loss enhancement in YBCO. It is found that in absence of carbon contamination, oxygen in-diffusion rate in YBCO is much faster than the out-diffusion rate, the later being surface reaction limited. The oxygen diffusion coefficients and the surface exchange coefficients of YBCO films have been evaluated. These results will be discussed in relation with the mechanism of high temperature YBCO thin film growth by cathodic sputtering and with the mechanism of the oxygen loss and/or uptake during the sample cooling.


Sign in / Sign up

Export Citation Format

Share Document